Леонид Жуков — об ответственности людей и машин за принятие критических решений

РБКHi-Tech

На ошибках учатся

Леонид Жуков — об ответственности людей и машин за принятие критических решений.

Фото: из личного архива

Мы ежедневно сталкиваемся с искусственным интеллектом, но редко задумываемся, какие нормы этики заложены в его алгоритмы, какие решения машины могут принимать самостоятельно, а для чего нужно слово человека. Глава Лаборатории по искусственному интеллекту «Сбера» Леонид Жуков объяснил, почему люди в ближайшем будущем не смогут полностью довериться ИИ.

Что такое хорошо...

Существует этика разработчиков, то есть тех, кто создает софт, этика применения алгоритмов и этика пользователей. Если говорить про разработчиков, то их задача — предотвратить закладывание в алгоритмы процессов, которые могут навредить человеку. С точки зрения алгоритмов самый главный вопрос в том, чтобы они были справедливы в принятии каких-либо решений и честны с пользователем. Пользователь, в свою очередь, должен использовать ИИ только по прямому назначению.

Почему вопрос этики встает, когда речь заходит про искусственный интеллект, и не так важен, к примеру, в разговоре про обычный софт? ИИ, в отличие от традиционного программного продукта, учится на примерах, которые мы ему даем. Он обобщает поступившую информацию и применяет полученные знания к ситуации, которая раньше не встречалась. В этом заключается сила алгоритмов: если бы мы могли перечислить все возможные встречающиеся ситуации, тогда искусственный интеллект был бы бесполезен. Например, без искусственного интеллекта сложно учить машину ездить, потому что невозможно спрогнозировать каждую ситуацию, которая будет встречаться на дороге. Алгоритмы в этом случае способны принять решение самостоятельно на основе анализа и обобщения примеров в его памяти.

Но ИИ может и ошибиться. В алгоритмах, как в любом медицинском тесте, есть показатели точности и есть ошибки, которые невозможно избежать в силу их предсказательной или обобщающей способности. Есть также ошибки, которые возникают при обучении ИИ, потому что определенные сценарии не встречались в обучающих примерах. Например, в компании N за всю историю не было женщин, занимавших высокие посты. Алгоритм, основываясь на этих данных, никогда не наймет женщин, потому что будет считать, что они не способны достичь высокого положения в компании.

Это этично? Нет. Поэтому с точки зрения разработчиков очень важно минимизировать возможность таких ошибок и научить алгоритм собирать непредвзятые данные. С точки зрения пользователей алгоритмов, как уже говорилось выше, очень важно не применять ИИ в ситуациях, для которых он не предназначен. Например, если алгоритм, натренированный отличать кошек от собак, запустить в зоопарке, он будет либо не способен дать ответ, либо, что еще хуже, пытаться классифицировать всех зверей лишь на кошек или собак.

…и что такое плохо

На сегодняшний день основное средство контроля за этичностью алгоритма — это отсутствие у него возможности принимать критически важные решения самостоятельно. Например, ставить диагнозы. На языке разработчиков это называется human in the loop: человек обязательно участвует в принятии решений, а алгоритм выступает как советчик.

Уровень алгоритмов пока не настолько высок, чтобы мы им доверяли принятие жизненно важных решений, но некоторые вещи мы все же позволяем делать ИИ самостоятельно. Например, повсеместно используемые роботы-пылесосы. Они управляются искусственным интеллектом, но могут ошибиться и заехать не в ту комнату или наехать на препятствие. Однако это не грубая ошибка, и она не приводит к критическим последствиям. То есть пылесос не может сделать ничего такого, что могло бы навредить человеку. Это к вопросу об этике — в алгоритмы работы робота заложены определенные ограничения, которые он не может переступить.

Существующие алгоритмы ИИ можно разделить на два класса: black-box и white-box. Первый — это некий «черный ящик», при использовании которого даже эксперту, создавшему его, может быть непонятно, почему ИИ выдал ту или иную рекомендацию (например, модели глубинного нейронного обучения, deep learning). Такие алгоритмы можно использовать для сервисов с музыкой или фильмами, но нельзя применять ни в медицине, ни в финансах, ни в какой-либо другой ответственной отрасли.

White-box или transparent (прозрачные алгоритмы), наоборот, используют для важных отраслей, так как там алгоритмы максимально просты и понятны. Важным моментом для обеих категорий является ответственность за ошибку. Пока этот вопрос остается нерешенным с юридической точки зрения. Неясно, кто должен нести ответственность за неправильное решение или ошибку ИИ — пользователь, создатель или владелец алгоритма.

Алгоритмы учатся точнее моделировать ситуации и меньше ошибаться, однако они никогда не станут совершенны и безошибочны. Вопрос о допустимом пороге ошибок, цене за ошибку и экономии от замены человека искусственным интеллектом будет стоять всегда. В ближайшем будущем человек по-прежнему будет принимать критические решения, каким бы умным и этичным ни был ИИ.

Леонид Жуков — директор Лаборатории по искусственному интеллекту «Сбера», доктор наук, профессор Высшей школы экономики, пятикратно удостоенный звания «Лучший преподаватель». Является одним из ведущих экспертов в России и в мире в области анализа больших данных, искусственного интеллекта и машинного обучения.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Rariteco: Тихая роскошь Rariteco: Тихая роскошь

Как тренд на приватность проявляется в недвижимости

РБК
Как вспышка на солнце «объяснила» происхождение заброшенной крепости Как вспышка на солнце «объяснила» происхождение заброшенной крепости

Дендрохронология помогла установить дату строительства древней крепости

Наука и жизнь
Слово редактора Слово редактора

На самом деле, нет более открытых миру людей, чем яхтсмены

Y Magazine
Напустил туман Напустил туман

Георгианский особняк в Лондоне и традиционный английский интерьер

AD
Давид Ян: «В мире появится движение Robot lives matter» Давид Ян: «В мире появится движение Robot lives matter»

Давид Ян уверен, что нейросети нужен эмоциональный интеллект

РБК
Город без нагромождений Город без нагромождений

Новое оборудование для сотовых сетей не портит городских пейзажей

РБК
Елки-палки Елки-палки

Что пошло не так с стартапом по озеленению леса Maraquia

Forbes
Медузомицет или комбуча? Медузомицет или комбуча?

Чайный гриб вновь стал популярным. Полезен ли он и чем отличается от комбучи?

Наука и жизнь
Даже лучший алгоритм может навредить человеку Даже лучший алгоритм может навредить человеку

Олег Бяхов — об этичных трендах и общении с искусственным интеллектом

РБК
Кость даю Кость даю

Семейная коллекция северного косторезного искусства Михаила Карисалова

Forbes
Пляшем от печки Пляшем от печки

Мансарда в районе Старого Арбата с дизайнерской голландкой посередине

AD
Новое изобретение для телефона Новое изобретение для телефона

С момента изобретения телефона техника для связи успела сильно измениться

Наука и жизнь
Новая домашняя подъемная машина Новая домашняя подъемная машина

Наши города и здания часто напоминают полосу препятствий

Наука и жизнь
Несколько страниц из жизни… пня Несколько страниц из жизни… пня

Пень многолик. Присмотримся к нему повнимательнее

Наука и жизнь
Этан, метан, азот и Титан Этан, метан, азот и Титан

Титан можно было бы даже сравнить с Землёй, если бы не одно «но»

Наука и жизнь
Ананасы в шампанском — это пульс вечеров! Ананасы в шампанском — это пульс вечеров!

О литературном и гастрономическом вкусе Серебряного века

Наука и жизнь
Любимые рецепты Лали Чочия. Маффины из тыквы Любимые рецепты Лали Чочия. Маффины из тыквы

Лали Чочия делится рецептом сытных и полезных тыквенных маффинов

Seasons of life
Какая-то трава вместо чая Какая-то трава вместо чая

Каркаде и ройбуш — конкуренты традиционного чая

Наука и жизнь
Приватный арсенал Приватный арсенал

Из чего состоит оружейная коллекция миллиардера Игоря Алтушкина

Forbes
Трагическое наследство Трагическое наследство

Как Катерина Босов оказалась втянутой в борьбу за активы мужа

Forbes
«Пандемия сорвала маски: стало очевидно, кто на что способен» «Пандемия сорвала маски: стало очевидно, кто на что способен»

Почему пандемия повысит спрос на позитивный менеджмент в российских компаниях?

РБК
О чём тот дуб молчит красноречиво… О чём тот дуб молчит красноречиво…

Ириновский дуб — памятник живой природы

Наука и жизнь
Больной человек Европы Больной человек Европы

История прокладки Багдадской железной дороги, приблизившей Первую мировую войну

Forbes
«Жар-птица» Арктики «Жар-птица» Арктики

Самая редкая птица Арктики — розовая чайка

Наука и жизнь
Пока огонь горит Пока огонь горит

Африка — колыбель человечества, а ЮАР — многонациональная и разнородная страны

Вокруг света
Пациенты новой ориентации Пациенты новой ориентации

Объемы предоставления платных медуслуг в России снижаются

РБК
Приключения Электроника Приключения Электроника

Фабрика «цифровых сотрудников» позволяет людям не чувствовать себя роботами

Forbes
Без возрастных ограничений Без возрастных ограничений

Декоратор Натела Манкаева сделала интерьер, отвечающий вкусам двух поколений

AD
Речной дворец Речной дворец

Северный речной вокзал открылся после масштабной реставрации

AD
Сыр, пир и мир в медицинской маске Сыр, пир и мир в медицинской маске

Почему гостей истринского сырного фестиваля пугали цены на вино

Forbes
Открыть в приложении