Леонид Жуков — об ответственности людей и машин за принятие критических решений

РБКHi-Tech

На ошибках учатся

Леонид Жуков — об ответственности людей и машин за принятие критических решений.

Фото: из личного архива

Мы ежедневно сталкиваемся с искусственным интеллектом, но редко задумываемся, какие нормы этики заложены в его алгоритмы, какие решения машины могут принимать самостоятельно, а для чего нужно слово человека. Глава Лаборатории по искусственному интеллекту «Сбера» Леонид Жуков объяснил, почему люди в ближайшем будущем не смогут полностью довериться ИИ.

Что такое хорошо...

Существует этика разработчиков, то есть тех, кто создает софт, этика применения алгоритмов и этика пользователей. Если говорить про разработчиков, то их задача — предотвратить закладывание в алгоритмы процессов, которые могут навредить человеку. С точки зрения алгоритмов самый главный вопрос в том, чтобы они были справедливы в принятии каких-либо решений и честны с пользователем. Пользователь, в свою очередь, должен использовать ИИ только по прямому назначению.

Почему вопрос этики встает, когда речь заходит про искусственный интеллект, и не так важен, к примеру, в разговоре про обычный софт? ИИ, в отличие от традиционного программного продукта, учится на примерах, которые мы ему даем. Он обобщает поступившую информацию и применяет полученные знания к ситуации, которая раньше не встречалась. В этом заключается сила алгоритмов: если бы мы могли перечислить все возможные встречающиеся ситуации, тогда искусственный интеллект был бы бесполезен. Например, без искусственного интеллекта сложно учить машину ездить, потому что невозможно спрогнозировать каждую ситуацию, которая будет встречаться на дороге. Алгоритмы в этом случае способны принять решение самостоятельно на основе анализа и обобщения примеров в его памяти.

Но ИИ может и ошибиться. В алгоритмах, как в любом медицинском тесте, есть показатели точности и есть ошибки, которые невозможно избежать в силу их предсказательной или обобщающей способности. Есть также ошибки, которые возникают при обучении ИИ, потому что определенные сценарии не встречались в обучающих примерах. Например, в компании N за всю историю не было женщин, занимавших высокие посты. Алгоритм, основываясь на этих данных, никогда не наймет женщин, потому что будет считать, что они не способны достичь высокого положения в компании.

Это этично? Нет. Поэтому с точки зрения разработчиков очень важно минимизировать возможность таких ошибок и научить алгоритм собирать непредвзятые данные. С точки зрения пользователей алгоритмов, как уже говорилось выше, очень важно не применять ИИ в ситуациях, для которых он не предназначен. Например, если алгоритм, натренированный отличать кошек от собак, запустить в зоопарке, он будет либо не способен дать ответ, либо, что еще хуже, пытаться классифицировать всех зверей лишь на кошек или собак.

…и что такое плохо

На сегодняшний день основное средство контроля за этичностью алгоритма — это отсутствие у него возможности принимать критически важные решения самостоятельно. Например, ставить диагнозы. На языке разработчиков это называется human in the loop: человек обязательно участвует в принятии решений, а алгоритм выступает как советчик.

Уровень алгоритмов пока не настолько высок, чтобы мы им доверяли принятие жизненно важных решений, но некоторые вещи мы все же позволяем делать ИИ самостоятельно. Например, повсеместно используемые роботы-пылесосы. Они управляются искусственным интеллектом, но могут ошибиться и заехать не в ту комнату или наехать на препятствие. Однако это не грубая ошибка, и она не приводит к критическим последствиям. То есть пылесос не может сделать ничего такого, что могло бы навредить человеку. Это к вопросу об этике — в алгоритмы работы робота заложены определенные ограничения, которые он не может переступить.

Существующие алгоритмы ИИ можно разделить на два класса: black-box и white-box. Первый — это некий «черный ящик», при использовании которого даже эксперту, создавшему его, может быть непонятно, почему ИИ выдал ту или иную рекомендацию (например, модели глубинного нейронного обучения, deep learning). Такие алгоритмы можно использовать для сервисов с музыкой или фильмами, но нельзя применять ни в медицине, ни в финансах, ни в какой-либо другой ответственной отрасли.

White-box или transparent (прозрачные алгоритмы), наоборот, используют для важных отраслей, так как там алгоритмы максимально просты и понятны. Важным моментом для обеих категорий является ответственность за ошибку. Пока этот вопрос остается нерешенным с юридической точки зрения. Неясно, кто должен нести ответственность за неправильное решение или ошибку ИИ — пользователь, создатель или владелец алгоритма.

Алгоритмы учатся точнее моделировать ситуации и меньше ошибаться, однако они никогда не станут совершенны и безошибочны. Вопрос о допустимом пороге ошибок, цене за ошибку и экономии от замены человека искусственным интеллектом будет стоять всегда. В ближайшем будущем человек по-прежнему будет принимать критические решения, каким бы умным и этичным ни был ИИ.

Леонид Жуков — директор Лаборатории по искусственному интеллекту «Сбера», доктор наук, профессор Высшей школы экономики, пятикратно удостоенный звания «Лучший преподаватель». Является одним из ведущих экспертов в России и в мире в области анализа больших данных, искусственного интеллекта и машинного обучения.

O'qishni davom ettirish uchun tizimga kiring. Bu tez va bepul.

Roʻyxatdan oʻtish orqali men foydalanish shartlari 

Tavsiya etilgan maqolalar

Как платная трасса увеличивает экономический потенциал Самарской области Как платная трасса увеличивает экономический потенциал Самарской области

О перспективах развития платных дорог в РФ

РБК
Даже лучший алгоритм может навредить человеку Даже лучший алгоритм может навредить человеку

Олег Бяхов — об этичных трендах и общении с искусственным интеллектом

РБК
Она вышивает мечты Она вышивает мечты

Самая яркая звезда на небосклоне высокой моды Поднебесной — талантливая Гуо Пей

Y Magazine
Напустил туман Напустил туман

Георгианский особняк в Лондоне и традиционный английский интерьер

AD
Рейтинг доверия Рейтинг доверия

Дмитрий Марков — о рисках и преимуществах биометрических систем

РБК
Ананасы в шампанском — это пульс вечеров! Ананасы в шампанском — это пульс вечеров!

О литературном и гастрономическом вкусе Серебряного века

Наука и жизнь
Боты против уток. Сможет ли искусственный интеллект избавить соцсети от Fake News Боты против уток. Сможет ли искусственный интеллект избавить соцсети от Fake News

Мы считаем, что интернет создан ради нас, но на деле его пользователи — боты

РБК
Пазл сложился Пазл сложился

Квартира мечты в сталинском доме близ Тимирязевского лесопарка

AD
Елки-палки Елки-палки

Что пошло не так с стартапом по озеленению леса Maraquia

Forbes
Умная почка Умная почка

Почки создают условия для высокой эффективности работы клеток всех органов

Наука и жизнь
Сказки на ночь: 19 книг, которые помогут ребенку уснуть Сказки на ночь: 19 книг, которые помогут ребенку уснуть

Любимые книги, которые стоит читать перед сном

Seasons of life
Радуга над мысом Горн Радуга над мысом Горн

История одного морского круиза

Наука и жизнь
Девичьи грезы Девичьи грезы

Хозяйка этой квартиры мечтала воссоздать обстановку своего детства

AD
По течению реки По течению реки

Небольшой домик на берегу Волги в соответствии с философией ваби‑саби

AD
Пляшем от печки Пляшем от печки

Мансарда в районе Старого Арбата с дизайнерской голландкой посередине

AD
Поимка «тихого убийцы» Поимка «тихого убийцы»

Нобелевская премия 2020 года присуждена за открытие вируса гепатита C

Наука и жизнь
Вот так встреча Вот так встреча

Долгие новогодние каникулы дают шанс поупражняться в искусстве принимать гостей

AD
Речной дворец Речной дворец

Северный речной вокзал открылся после масштабной реставрации

AD
Эти странные силы инерции Эти странные силы инерции

Силы инерции — очень необычны

Наука и жизнь
В области балета В области балета

Сергей Дягилев — феномен русского балета и создатель легендарных русских сезонов

Вокруг света
Приключения Электроника Приключения Электроника

Фабрика «цифровых сотрудников» позволяет людям не чувствовать себя роботами

Forbes
«Сейчас мне, мягко говоря, не до искусства, но собирать я продолжу» «Сейчас мне, мягко говоря, не до искусства, но собирать я продолжу»

Предприниматель Алексей Ананьев о своей художественной коллекции

Forbes
Кремний с нанопорами — материал с неисчерпаемыми возможностями Кремний с нанопорами — материал с неисчерпаемыми возможностями

Нанопористый кремний — перспективный материал для микроэлектроники и биомедицины

Наука и жизнь
Жуки-навозники: 70 миллионов лет эволюции Жуки-навозники: 70 миллионов лет эволюции

Деятельность жуков-навозников имеет воистину планетарное значение

Наука и жизнь
Трагическое наследство Трагическое наследство

Как Катерина Босов оказалась втянутой в борьбу за активы мужа

Forbes
В свете полной луны… В свете полной луны…

...происходят странные вещи с поведением животных

Вокруг света
Дары на вечное хранение Дары на вечное хранение

Юбилейная выставка в Русском музее: поклон в пояс дарителям!

Наука и жизнь
Сыр, пир и мир в медицинской маске Сыр, пир и мир в медицинской маске

Почему гостей истринского сырного фестиваля пугали цены на вино

Forbes
Сообразим на троих Сообразим на троих

Сергей Студенников в одиночку создал гигантскую сеть «Красное & Белое»

Forbes
Без возрастных ограничений Без возрастных ограничений

Декоратор Натела Манкаева сделала интерьер, отвечающий вкусам двух поколений

AD
Открыть в приложении